All functions

compare_to_baseline()

Compare motif occurence in empirical network to occurence in a baseline model

count_motifs()

Count multi-level motifs

critical_dyads()

List critical dyads

directed_dummy_net

Two-level directed network dummy example

dummy_net

Three-level network dummy example

edge_contribution()

List edge contribution

exemplify_motif()

Returns an example for a motif found in a given network

explore_motifs()

Explore the motif zoo interactively in a shiny app

identify_gaps()

List gaps

induced_level_subgraph()

Returns subgraph induced by one level of the network

is.directed()

Checks whether the given network is directed

large_directed_dummy_net

Large two-level directed network dummy example

list_motifs()

Lists motifs of a given class or all motifs with a given signature

ml_net

Two-level network example (wetlands management)

motif_summary()

Summary for motif counts and Erdős-Rényi distribution

motifs_distribution()

Compute statistical properties (expectation and variance) of the distribution of motifs in a baseline model

plot_critical_dyads()

Plot critical dyads in network visualisation

plot_gaps()

Plot gaps in network visualisation

plot_gaps_or_critical_dyads()

Helper function for plotting gaps and critical edges

plot_mnet()

Visualize a multi-level network (using ggraph)

show_motif()

Plots an example for a motif with given motif identifier string taken from the given graph.

simulate_baseline()

Simulate a baseline baseline model

supported_classes()

Lists all supported motif classes for a given signature

supported_signatures()

Lists all supported signatures

tidygraph_dummy_net

Two-level tidygraph network example

to_py_graph()

Translate multi-level statnet or igraph network object to Python networkx object

update_motifr()

Checks for updates for motifr's Python core, the sma package